Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 4773
IEEE journal on selected areas in communications, 2021-12, Vol.39 (12), p.3851-3869
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Semi-Decentralized Federated Learning With Cooperative D2D Local Model Aggregations
Ist Teil von
  • IEEE journal on selected areas in communications, 2021-12, Vol.39 (12), p.3851-3869
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2021
Quelle
IEL
Beschreibungen/Notizen
  • Federated learning has emerged as a popular technique for distributing machine learning (ML) model training across the wireless edge. In this paper, we propose two timescale hybrid federated learning ( TT-HF ), a semi-decentralized learning architecture that combines the conventional device-to-server communication paradigm for federated learning with device-to-device (D2D) communications for model training. In TT-HF , during each global aggregation interval, devices (i) perform multiple stochastic gradient descent iterations on their individual datasets, and (ii) aperiodically engage in consensus procedure of their model parameters through cooperative, distributed D2D communications within local clusters. With a new general definition of gradient diversity, we formally study the convergence behavior of TT-HF , resulting in new convergence bounds for distributed ML. We leverage our convergence bounds to develop an adaptive control algorithm that tunes the step size, D2D communication rounds, and global aggregation period of TT-HF over time to target a sublinear convergence rate of <inline-formula> <tex-math notation="LaTeX">\mathcal {O}(1/t) </tex-math></inline-formula> while minimizing network resource utilization. Our subsequent experiments demonstrate that TT-HF significantly outperforms the current art in federated learning in terms of model accuracy and/or network energy consumption in different scenarios where local device datasets exhibit statistical heterogeneity. Finally, our numerical evaluations demonstrate robustness against outages caused by fading channels, as well favorable performance with non-convex loss functions.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX