Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 10 von 7910
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, p.233-242
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Beyond Joint Demosaicking and Denoising: An Image Processing Pipeline for a Pixel-bin Image Sensor
Ist Teil von
  • 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, p.233-242
Ort / Verlag
IEEE
Erscheinungsjahr
2021
Quelle
IEEE/IET Electronic Library (IEL)
Beschreibungen/Notizen
  • Pixel binning is considered one of the most prominent solutions to tackle the hardware limitation of smartphone cameras. Despite numerous advantages, such an image sensor has to appropriate an artefact-prone non-Bayer colour filter array (CFA) to enable the binning capability. Contrarily, performing essential image signal processing (ISP) tasks like demosaicking and denoising, explicitly with such CFA patterns, makes the reconstruction process notably complicated. In this paper, we tackle the challenges of joint demosaicing and denoising (JDD) on such an image sensor by introducing a novel learning-based method. The proposed method leverages the depth and spatial attention in a deep network. The proposed network is guided by a multi-term objective function, including two novel perceptual losses to produce visually plausible images. On top of that, we stretch the proposed image processing pipeline to comprehensively reconstruct and enhance the images captured with a smartphone camera, which uses pixel binning techniques. The experimental results illustrate that the proposed method can outperform the existing methods by a noticeable margin in qualitative and quantitative comparisons. Code available: https://github.com/sharif-apu/BJDD_CVPR21.
Sprache
Englisch
Identifikatoren
eISSN: 2160-7516
DOI: 10.1109/CVPRW53098.2021.00032
Titel-ID: cdi_ieee_primary_9522687

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX