Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Visualizing Association in Exemplar-Based Classification
Ist Teil von
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, p.1780-1784
Ort / Verlag
IEEE
Erscheinungsjahr
2021
Quelle
IEEE Xplore
Beschreibungen/Notizen
Recent progress in deep learning has enhanced image classification performance. However, classification using deep convolutional neural networks lacks interpretability. To solve this problem, we propose a novel method of explainable classification; this method uses images representing each image class, which we call exemplars. Our method comprises encoder-decoder models (association networks) and a classifier. First, the association networks transform each input image into an image that a deep neural network associates, which we call an associative image. Then, the image-level similarity between the associative images and the exemplars is used as a feature for classification. This similarity explains the decision of the classifiers. We conducted experiments using CIFAR-10, CIFAR-100, and STL-10 and demonstrated our classifier's interpretability through the proposed visualization technique.