Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 19 von 47
2020 25th International Conference on Pattern Recognition (ICPR), 2021, p.7790-7795
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Delivering Meaningful Representation for Monocular Depth Estimation
Ist Teil von
  • 2020 25th International Conference on Pattern Recognition (ICPR), 2021, p.7790-7795
Ort / Verlag
IEEE
Erscheinungsjahr
2021
Quelle
IEEE Xplore Digital Library
Beschreibungen/Notizen
  • Monocular depth estimation plays a key role in 3D scene understanding, and a number of recent papers have achieved significant improvements using deep learning based algorithms. Most papers among them proposed methods that use a pre-trained network as a deep feature extractor and then decode the obtained features to create a depth map. In this study, we focus on how to use this encoder-decoder structure to deliver meaningful representation throughout the entire network. We propose a new network architecture with our suggested modules to create a more accurate depth map by bridging the context between the encoding and decoding phase. First, we place the pyramid block at the bottleneck of the network to enlarge the view and convey rich information about the global context to the decoder. Second, we suggest a skip connection with the fuse module to aggregate the encoder and decoder feature. Finally, we validate our approach on the NYU Depth V2 and KITTI datasets. The experimental results show the efficacy of the suggested model and show performance gains over the state-of-the-art model.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/ICPR48806.2021.9412108
Titel-ID: cdi_ieee_primary_9412108

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX