Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 23
2020 25th International Conference on Pattern Recognition (ICPR), 2021, p.1452-1459
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Triplet-path Dilated Network for Detection and Segmentation of General Pathological Images
Ist Teil von
  • 2020 25th International Conference on Pattern Recognition (ICPR), 2021, p.1452-1459
Ort / Verlag
IEEE
Erscheinungsjahr
2021
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Deep learning has been widely applied in the field of medical image processing. However, compared with flourishing visual tasks in natural images, the progress achieved in pathological images is not remarkable, and detection and segmentation, which are among basic tasks of computer vision, are regarded as two independent tasks. In this paper, we make full use of existing datasets and construct a triplet-path network using dilated convolutions to cooperatively accomplish one-stage object detection and nuclei segmentation for general pathological images. First, in order to meet the requirement of detection and segmentation, a novel structure called triplet feature generation (TFG) is designed to extract high-resolution and multiscale features, where features from different layers can be properly integrated. Second, considering that pathological datasets are usually small, a location-aware and partially truncated loss function is proposed to improve the classification accuracy of datasets with few images and widely varying targets. We compare the performance of both object detection and instance segmentation with state-of-the-art methods. Experimental results demonstrate the effectiveness and efficiency of the proposed network on two datasets collected from multiple organs.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/ICPR48806.2021.9411950
Titel-ID: cdi_ieee_primary_9411950

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX