Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 308
IEEE transactions on intelligent transportation systems, 2022-02, Vol.23 (2), p.722-739
2022
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review
Ist Teil von
  • IEEE transactions on intelligent transportation systems, 2022-02, Vol.23 (2), p.722-739
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2022
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • Autonomous vehicles were experiencing rapid development in the past few years. However, achieving full autonomy is not a trivial task, due to the nature of the complex and dynamic driving environment. Therefore, autonomous vehicles are equipped with a suite of different sensors to ensure robust, accurate environmental perception. In particular, the camera-LiDAR fusion is becoming an emerging research theme. However, so far there has been no critical review that focuses on deep-learning-based camera-LiDAR fusion methods. To bridge this gap and motivate future research, this article devotes to review recent deep-learning-based data fusion approaches that leverage both image and point cloud. This review gives a brief overview of deep learning on image and point cloud data processing. Followed by in-depth reviews of camera-LiDAR fusion methods in depth completion, object detection, semantic segmentation, tracking and online cross-sensor calibration, which are organized based on their respective fusion levels. Furthermore, we compare these methods on publicly available datasets. Finally, we identified gaps and over-looked challenges between current academic researches and real-world applications. Based on these observations, we provide our insights and point out promising research directions.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX