Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 31
2020 IEEE Region 10 Symposium (TENSYMP), 2020, p.556-559
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Use of Deep Learning Approach on UAV imagery to Detect Mistletoe Infestation
Ist Teil von
  • 2020 IEEE Region 10 Symposium (TENSYMP), 2020, p.556-559
Ort / Verlag
IEEE
Erscheinungsjahr
2020
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Mistletoe infestation reduces crop yield and degrades crop quality through depletion of nutrients and moisture from host plants. Timely detection of such infestation is critical for crop growers but a difficult task to perform. Published literature on such research is scarce especially for automated detection of mistletoe infestations, which can assist farmers in taking timely and effective measures. This paper reviews existing literature on mistletoe and other infestation detection through machine learning techniques. Moreover, the paper presents a deep learning-based architecture along with image pre-processing techniques, and a training method that could be used for detection of mistletoe. The experimental studies using the proposed framework are currently in-progress where aerial images of plants are to be taken from UAVs (Unmanned Aerial Vehicles).
Sprache
Englisch
Identifikatoren
eISSN: 2642-6102
DOI: 10.1109/TENSYMP50017.2020.9230971
Titel-ID: cdi_ieee_primary_9230971

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX