Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 1014
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020, p.1289-1298
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Evaluating Scalable Bayesian Deep Learning Methods for Robust Computer Vision
Ist Teil von
  • 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020, p.1289-1298
Ort / Verlag
IEEE
Erscheinungsjahr
2020
Quelle
IEEE/IET Electronic Library
Beschreibungen/Notizen
  • While deep neural networks have become the go-to approach in computer vision, the vast majority of these models fail to properly capture the uncertainty inherent in their predictions. Estimating this predictive uncertainty can be crucial, for example in automotive applications. In Bayesian deep learning, predictive uncertainty is commonly decomposed into the distinct types of aleatoric and epistemic uncertainty. The former can be estimated by letting a neural network output the parameters of a certain probability distribution. Epistemic uncertainty estimation is a more challenging problem, and while different scalable methods recently have emerged, no extensive comparison has been performed in a real-world setting. We therefore accept this task and propose a comprehensive evaluation framework for scalable epistemic uncertainty estimation methods in deep learning. Our proposed framework is specifically designed to test the robustness required in real-world computer vision applications. We also apply this framework to provide the first properly extensive and conclusive comparison of the two current state-of-the- art scalable methods: ensembling and MC-dropout. Our comparison demonstrates that ensembling consistently provides more reliable and practically useful uncertainty estimates. Code is available at https://github.com/fregu856/evaluating_bdl.
Sprache
Englisch
Identifikatoren
eISSN: 2160-7516
DOI: 10.1109/CVPRW50498.2020.00167
Titel-ID: cdi_ieee_primary_9150658

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX