Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 16 von 55
2020 5th International Conference on Communication and Electronics Systems (ICCES), 2020, p.1356-1361
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Artificial Intelligence based State of Charge estimation of Li-ion battery for EV applications
Ist Teil von
  • 2020 5th International Conference on Communication and Electronics Systems (ICCES), 2020, p.1356-1361
Ort / Verlag
IEEE
Erscheinungsjahr
2020
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Battery technologies and advanced battery management systems are amongst the most trending research in automotive sectors as a result of the unprecedented push for electric vehicles. This paper, among existing methods for S tate of Charge (SoC) estimation of Lithium-Ion batteries used in Electric Vehicles (EV), explores various artificial intelligence-based and direct measurement techniques. A performance comparison of SoC estimation using the coulomb counting approach, Support Vector Machine (SVM) methods, and an optimal feed-forward artificial neural network (ANN) for different storage temperature, initial conditions, and stress tests have been presented for a Lithium-Ion battery for a variety of standard data sets. The stated models are trained using to predict SoC when voltage and current are given as inputs. Both the models are tuned and trained in a cloud-based open-source jupyter environment, collaboration. The results obtained post-performance analysis depicts the potential of ANN for accurate SoC estimation of battery used in EV. ANN has achieved a Mean Absolute Error (MAE) in a range of 0.5-1.4% over one complete cycle. This work can be further extended to validate the real-time performance of ANN with data collected from a hardware setup.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/ICCES48766.2020.9137999
Titel-ID: cdi_ieee_primary_9137999

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX