Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 5
2020 IEEE Winter Conference on Applications of Computer Vision (WACV), 2020, p.3298-3306
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
AlignNet: A Unifying Approach to Audio-Visual Alignment
Ist Teil von
  • 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), 2020, p.3298-3306
Ort / Verlag
IEEE
Erscheinungsjahr
2020
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • We present AlignNet, a model that synchronizes videos with reference audios undernon-uniform and irregularmis- alignments. AlignNet learns the end-to-end dense correspondence between each frame of a video and an audio. Our method is designed according to simple and well- established principles: attention, pyramidal processing, warping, and affinity function. Together with the model, we release a dancing dataset Dance50 for training and evaluation. Qualitative, quantitative and subjective evaluation results on dance-music alignment and speech-lip alignment demonstrate that our method far outperforms the state-of- the-art methods. Code, dataset and sample videos are available at our project page 1 .
Sprache
Englisch
Identifikatoren
eISSN: 2642-9381
DOI: 10.1109/WACV45572.2020.9093345
Titel-ID: cdi_ieee_primary_9093345

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX