Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 764
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, p.1618-1622
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Object Detection with Color and Depth Images with Multi-Reduced Region Proposal Network and Multi-Pooling
Ist Teil von
  • ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, p.1618-1622
Ort / Verlag
IEEE
Erscheinungsjahr
2020
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Object detection technology has received increasing research attention with recent developments in automation technology. Most studies in this field, however, use RGB images as input to deep-learning classifiers, and they rarely use depth information.So, in this paper, we use images with both RGB and depth information as input to an object detection network. We base our network on the Faster R-CNN proposed by Shih et al., and we develop a fast and accurate object detection architecture. In addition to adding depth as input, we also adjust the type of anchor boxes to improve performance on some objects. We also discuss the impact of pooling training data with multiple region proposal networks (RPN) and regions of interest (ROI).Adding depth information improved the mAP by 8.15%, from 36.86% to 45.01%, when using the SUN RGB-D dataset with 10 classes. Optimizing the anchor boxes improved the mAP from 45.01% to 45.88%. After testing various architectures with different reduced RPNs, we find that the model of 1RRPN-2ROIP performs best. The running time is 0.123 s, which is 1.8 times faster than the 3D-SSD model.
Sprache
Englisch
Identifikatoren
eISSN: 2379-190X
DOI: 10.1109/ICASSP40776.2020.9054009
Titel-ID: cdi_ieee_primary_9054009

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX