Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 24 von 237
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, p.3642-3646
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Attentive Cutmix: An Enhanced Data Augmentation Approach for Deep Learning Based Image Classification
Ist Teil von
  • ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, p.3642-3646
Ort / Verlag
IEEE
Erscheinungsjahr
2020
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • Convolutional neural networks (CNN) are capable of learning robust representation with different regularization methods and activations as convolutional layers are spatially correlated. Based on this property, a large variety of regional dropout strategies have been proposed, such as Cutout [1], DropBlock [2], CutMix [3], etc. These methods aim to promote the network to generalize better by partially occluding the discriminative parts of objects. However, all of them perform this operation randomly, without capturing the most important region(s) within an object. In this paper, we propose Attentive CutMix, a naturally enhanced augmentation strategy based on CutMix [3]. In each training iteration, we choose the most descriptive regions based on the intermediate attention maps from a feature extractor, which enables searching for the most discriminative parts in an image. Our proposed method is simple yet effective, easy to implement and can boost the baseline significantly. Extensive experiments on CIFAR-10/100, ImageNet datasets with various CNN architectures (in a unified setting) demonstrate the effectiveness of our proposed method, which consistently outperforms the baseline CutMix and other methods by a significant margin.
Sprache
Englisch
Identifikatoren
eISSN: 2379-190X
DOI: 10.1109/ICASSP40776.2020.9053994
Titel-ID: cdi_ieee_primary_9053994

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX