Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Event detection from Twitter data
2019 4th International Conference on Information Systems and Computer Networks (ISCON), 2019, p.793-798
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Event detection from Twitter data
Ist Teil von
  • 2019 4th International Conference on Information Systems and Computer Networks (ISCON), 2019, p.793-798
Ort / Verlag
IEEE
Erscheinungsjahr
2019
Quelle
IEL
Beschreibungen/Notizen
  • Event detection from Twitter is important for people to extract valuable information about real world events. Automation of this task is challenging due to short and noisy nature of microblogging data. Topic modeling algorithms such as Latent Dirichlet Allocation (LDA) is the most popular algorithm to extract topics from news articles but not suitable for microblogging content due to the data sparsity problem. In this paper, we proposed a method to handle data sparsity problem that makes LDA topic model suitable for Twitter data by considering super tweet (aggregation of similar tweets) as a document instead of single tweet without modifying internal structure of model. Extensive experiments on real-time twitter data show that our approach outperforms the baseline approaches.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/ISCON47742.2019.9036286
Titel-ID: cdi_ieee_primary_9036286

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX