Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 38
2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019, p.758-762
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Direct Validation of the Information Bottleneck Principle for Deep Nets
Ist Teil von
  • 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), 2019, p.758-762
Ort / Verlag
IEEE
Erscheinungsjahr
2019
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • The information bottleneck (IB) has been suggested as a fundamental principle governing performance in deep neural nets (DNNs). This idea sparked research on the information plane dynamics during training with the cross-entropy loss, and on using the IB of some "bottleneck" layer as a loss function. However, the claim that reaching the maximal value of the IB Lagrangian in each layer leads to optimal performance, was in fact never directly confirmed. In this paper, we propose a direct way of validating this hypothesis, using layer-by-layer training with the IB loss. In accordance with the original theory, we train each DNN layer explicitly with the IB objective (and without any classification loss), and freeze it before moving on to train the next layer. While mutual information (MI) is generally hard to estimate in high dimensions, we show that in the case of MI between DNN layers, this can be done quite accurately using a modification of the recently proposed mutual information neural estimator. Interestingly, we find that layer-by-layer training with the IB loss leads to accuracy which is on-par with end-to-end training with the cross entropy loss. This is, thus, the first direct experimental illustration of the link between the IB value in each layer, and a net's performance.
Sprache
Englisch
Identifikatoren
eISSN: 2473-9944
DOI: 10.1109/ICCVW.2019.00099
Titel-ID: cdi_ieee_primary_9022174

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX