Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 1711
2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, p.8171-8179
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Reciprocal Multi-Layer Subspace Learning for Multi-View Clustering
Ist Teil von
  • 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, p.8171-8179
Ort / Verlag
IEEE
Erscheinungsjahr
2019
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Multi-view clustering is a long-standing important research topic, however, remains challenging when handling high-dimensional data and simultaneously exploring the consistency and complementarity of different views. In this work, we present a novel Reciprocal Multi-layer Subspace Learning (RMSL) algorithm for multi-view clustering, which is composed of two main components: Hierarchical Self-Representative Layers (HSRL), and Backward Encoding Networks (BEN). Specifically, HSRL constructs reciprocal multi-layer subspace representations linked with a latent representation to hierarchically recover the underlying low-dimensional subspaces in which the high-dimensional data lie; BEN explores complex relationships among different views and implicitly enforces the subspaces of all views to be consistent with each other and more separable. The latent representation flexibly encodes complementary information from multiple views and depicts data more comprehensively. Our model can be efficiently optimized by an alternating optimization scheme. Extensive experiments on benchmark datasets show the superiority of RMSL over other state-of-the-art clustering methods.
Sprache
Englisch
Identifikatoren
eISSN: 2380-7504
DOI: 10.1109/ICCV.2019.00826
Titel-ID: cdi_ieee_primary_9010687

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX