Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 45
2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, p.5389-5398
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Joint Monocular 3D Vehicle Detection and Tracking
Ist Teil von
  • 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, p.5389-5398
Ort / Verlag
IEEE
Erscheinungsjahr
2019
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Vehicle 3D extents and trajectories are critical cues for predicting the future location of vehicles and planning future agent ego-motion based on those predictions. In this paper, we propose a novel online framework for 3D vehicle detection and tracking from monocular videos. The framework can not only associate detections of vehicles in motion over time, but also estimate their complete 3D bounding box information from a sequence of 2D images captured on a moving platform. Our method leverages 3D box depth-ordering matching for robust instance association and utilizes 3D trajectory prediction for re-identification of occluded vehicles. We also design a motion learning module based on an LSTM for more accurate long-term motion extrapolation. Our experiments on simulation, KITTI, and Argoverse datasets show that our 3D tracking pipeline offers robust data association and tracking. On Argoverse, our image-based method is significantly better for tracking 3D vehicles within 30 meters than the LiDAR-centric baseline methods.
Sprache
Englisch
Identifikatoren
eISSN: 2380-7504
DOI: 10.1109/ICCV.2019.00549
Titel-ID: cdi_ieee_primary_9009549

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX