Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 1 von 1980
2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, p.622-631
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Feature Weighting and Boosting for Few-Shot Segmentation
Ist Teil von
  • 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019, p.622-631
Ort / Verlag
IEEE
Erscheinungsjahr
2019
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • This paper is about few-shot segmentation of foreground objects in images. We train a CNN on small subsets of training images, each mimicking the few-shot setting. In each subset, one image serves as the query and the other(s) as support image(s) with ground-truth segmentation. The CNN first extracts feature maps from the query and support images. Then, a class feature vector is computed as an average of the support's feature maps over the known foreground. Finally, the target object is segmented in the query image by using a cosine similarity between the class feature vector and the query's feature map. We make two contributions by: (1) Improving discriminativeness of features so their activations are high on the foreground and low elsewhere; and (2) Boosting inference with an ensemble of experts guided with the gradient of loss incurred when segmenting the support images in testing. Our evaluations on the PASCAL-5 i and COCO-20 i datasets demonstrate that we significantly outperform existing approaches.
Sprache
Englisch
Identifikatoren
eISSN: 2380-7504
DOI: 10.1109/ICCV.2019.00071
Titel-ID: cdi_ieee_primary_9008552

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX