Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 47
IEEE transactions on vehicular technology, 2020-03, Vol.69 (3), p.3068-3079
2020
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Reinforcement Learning Based PHY Authentication for VANETs
Ist Teil von
  • IEEE transactions on vehicular technology, 2020-03, Vol.69 (3), p.3068-3079
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2020
Quelle
IEEE/IET Electronic Library
Beschreibungen/Notizen
  • Mobile edge computing in vehicular ad hoc networks (VANETs) suffers from rogue edge attacks due to the vehicle mobility and the network scale. In this paper, we present a physical authentication scheme to resist rogue edge attackers whose goal is to send spoofing signals to attack VANETs. This authentication scheme exploits the channel states of the shared ambient radio signals of the mobile device and its serving edge such as the onboard unit during the same moving trace and applies reinforcement learning to select the authentication modes and parameters. By applying transfer learning to save the learning time and applies deep learning to further improve the authentication performance, this scheme enables mobile devices in VANETs to optimize their authentication modes and parameters without being aware of the VANET channel model, the packet generation model, and the spoofing model. We provide the convergence bound such as the mobile device utility, evaluate the computational complexity of the physical authentication scheme, and verify the analysis results via simulations. Simulation and experimental results show that this scheme improves the authentication accuracy with reduced energy consumption against rogue edge attacks.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX