Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 2 von 7665
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, p.840-849
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Feature Selective Anchor-Free Module for Single-Shot Object Detection
Ist Teil von
  • 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, p.840-849
Ort / Verlag
IEEE
Erscheinungsjahr
2019
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • We motivate and present feature selective anchor-free (FSAF) module, a simple and effective building block for single-shot object detectors. It can be plugged into single-shot detectors with feature pyramid structure. The FSAF module addresses two limitations brought up by the conventional anchor-based detection: 1) heuristic-guided feature selection; 2) overlap-based anchor sampling. The general concept of the FSAF module is online feature selection applied to the training of multi-level anchor-free branches. Specifically, an anchor-free branch is attached to each level of the feature pyramid, allowing box encoding and decoding in the anchor-free manner at an arbitrary level. During training, we dynamically assign each instance to the most suitable feature level. At the time of inference, the FSAF module can work independently or jointly with anchor-based branches. We instantiate this concept with simple implementations of anchor-free branches and online feature selection strategy. Experimental results on the COCO detection track show that our FSAF module performs better than anchor-based counterparts while being faster. When working jointly with anchor-based branches, the FSAF module robustly improves the baseline RetinaNet by a large margin under various settings, while introducing nearly free inference overhead. And the resulting best model can achieve a state-of-the-art 44.6% mAP, outperforming all existing single-shot detectors on COCO.
Sprache
Englisch
Identifikatoren
eISSN: 2575-7075
DOI: 10.1109/CVPR.2019.00093
Titel-ID: cdi_ieee_primary_8953532

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX