Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 25 von 787
2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2019, p.1-4
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Image-Based Real-Time Fire Detection using Deep Learning with Data Augmentation for Vision-Based Surveillance Applications
Ist Teil von
  • 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), 2019, p.1-4
Ort / Verlag
IEEE
Erscheinungsjahr
2019
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • With recent advances in embedded processing capability, vision-based real-time fire detection has been enabled in surveillance devices. This paper presents an image-based fire detection framework based on deep learning. The key is to learn a fire detector relying on tiny-YOLO (You Only Look Once) v3 deep model. With the advantage of lightweight architecture of tiny-YOLOv3 and training data augmentation by some parameter adjusting, our fire detection model can achieve better detection accuracy in real-time with lower complexity in the training stage. Experimental results have verified the effectiveness of the proposed framework.
Sprache
Englisch
Identifikatoren
eISSN: 2643-6213
DOI: 10.1109/AVSS.2019.8909899
Titel-ID: cdi_ieee_primary_8909899

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX