Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 842
2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, Vol.2019, p.2027-2031
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Depthwise Separable Convolutional Neural Network Model for Intra-Retinal Cyst Segmentation
Ist Teil von
  • 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, Vol.2019, p.2027-2031
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2019
Quelle
MEDLINE
Beschreibungen/Notizen
  • Intra-retinal cysts (IRCs) are significant in detecting several ocular and retinal pathologies. Segmentation and quantification of IRCs from optical coherence tomography (OCT) scans is a challenging task due to present of speckle noise and scan intensity variations across the vendors. This work proposes a convolutional neural network (CNN) model with an encoder-decoder pair architecture for IRC segmentation across different cross-vendor OCT scans. Since deep CNN models have high computational complexity due to a large number of parameters, the proposed method of depthwise separable convolutional filters aids model generalizability and prevents model over-fitting. Also, the swish activation function is employed to prevent the vanishing gradient problem. The optima cyst segmentation challenge (OCSC) dataset with four different vendor OCT device scans is used to evaluate the proposed model. Our model achieves a mean Dice score of 0.74 and mean recall/precision rate of 0.72/0.82 across different imaging vendors and it outperforms existing algorithms on the OCSC dataset.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX