Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 14
2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 2019, p.1-4
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Multimodal Ensemble Approach to Incorporate Various Types of Clinical Notes for Predicting Readmission
Ist Teil von
  • 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), 2019, p.1-4
Ort / Verlag
IEEE
Erscheinungsjahr
2019
Quelle
IEEE/IET Electronic Library (IEL)
Beschreibungen/Notizen
  • Electronic Health Records (EHRs) have been heavily used to predict various downstream clinical tasks such as readmission or mortality. One of the modalities in EHRs, clinical notes, has not been fully explored for these tasks due to its unstructured and inexplicable nature. Although recent advances in deep learning (DL) enables models to extract interpretable features from unstructured data, they often require a large amount of training data. However, many tasks in medical domains inherently consist of small sample data with lengthy documents; for a kidney transplant as an example, data from only a few thousand of patients are available and each patient's document consists of a couple of millions of words in major hospitals. Thus, complex DL methods cannot be applied to these kind of domains. In this paper, we present a comprehensive ensemble model using vector space modeling and topic modeling. Our proposed model is evaluated on the readmission task of kidney transplant patients, and improves 0.0211 in terms of c-statistics from the previous state-of-the-art approach using structured data, while typical DL methods fails to beat this approach. The proposed architecture provides the interpretable score for each feature from both modalities, structured and unstructured data, which is shown to be meaningful through a physician's evaluation.
Sprache
Englisch
Identifikatoren
eISSN: 2641-3604
DOI: 10.1109/BHI.2019.8834640
Titel-ID: cdi_ieee_primary_8834640

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX