Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Proceedings of the 2000 6th IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 2000) (Cat. No.00TH8509), 2000, p.135-140
Regularization-based continuous-time motion detection by single-layer cellular neural networks
Ist Teil von
Proceedings of the 2000 6th IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 2000) (Cat. No.00TH8509), 2000, p.135-140
Ort / Verlag
IEEE
Erscheinungsjahr
2000
Quelle
IEEE/IET Electronic Library
Beschreibungen/Notizen
Regularization theory is proposed for systematic design of linear- and nonlinear-connection-based cellular neural networks (CNN). In this paper, after stating the basics of regularization-based design of CNNs, such methodology is applied to the problem of continuous-time motion field estimation in moving images. A single-layer solution is thus obtained and simulated, paving the way to full two-dimensional focal-plane real-time motion detection circuit implementation.