Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Learning Shallow Neural Networks via Provable Gradient Descent with Random Initialization
Ist Teil von
ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, p.5616-5620
Ort / Verlag
IEEE
Erscheinungsjahr
2019
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
This paper presents the provable gradient descent algorithm with random initialization for learning a two-layer neural network with quadratic activation functions. Specifically, we focus on the under-parameterized regime where the number of hidden units is smaller than the dimension of the inputs. We reveal that the randomly initialized gradient descent for the nonconvex neural network training problem is able to enter a local region that enjoys strong convexity and strong smoothness within a few iterations, and then provably converges to a globally optimal model at a linear rate.