Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Design, Implementation, and Evaluation of a Neural-Network-Based Quadcopter UAV System
Ist Teil von
IEEE transactions on industrial electronics (1982), 2020-03, Vol.67 (3), p.2076-2085
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2020
Quelle
IEEE Xplore
Beschreibungen/Notizen
In this paper, a quadcopter unmanned aerial vehicle (UAV) system based on neural-network enhanced dynamic inversion control is proposed for multiple real-world application scenarios. A sigma-pi neural network (SPNN) is used as the compensator to reduce the model error and improve the system performance in the presence of the uncertainties of UAV dynamics, payload, and environment. Besides, we present a technical framework for fast and robust implementation of multipurpose UAV systems and develop a testbed for the evaluation of UAV control system by using a high-precision optical motion capture system. Both simulation results and experiment results demonstrate that the SPNN can reduce the inversion errors related to UAV parameter uncertainties as well as tracking errors related to unknown disturbances and unmodeled dynamics. With the help of an online neural network (NN) learning mechanism, the entire system can achieve much higher accuracy in attitude and trajectory control than that achieved by conventional proportional-integral derivative based control systems under varying flight conditions.