Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 16
IEEE transactions on communications, 2019-06, Vol.67 (6), p.3834-3841
2019
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
New Locally Correctable Codes Based on Projective Reed-Muller Codes
Ist Teil von
  • IEEE transactions on communications, 2019-06, Vol.67 (6), p.3834-3841
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2019
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Locally decodable codes and locally correctable codes (LCCs) have several important applications, such as private information retrieval, secure multiparty computation, and circuit lower bounds. Three major parameters are considered in LCCs: query complexity, message length, and codeword length. The most familiar LCCs in the regime of low query complexity are the generalized Reed-Muller (GRM) codes. However, it has not previously been determined whether there exist codes that have shorter codeword lengths than GRM codes with the same query complexity and message length. In this paper, we show that the projective Reed-Muller (PRM) codes are such LCCs for some parameters. The GRM code is specified by the alphabet size <inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula>, the number of variables <inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula>, and the degree <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">d\le q-2 </tex-math></inline-formula>. When <inline-formula> <tex-math notation="LaTeX">d= q-2 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">q-1 </tex-math></inline-formula> is a power of a prime, we prove that there exists a PRM code with shorter codeword length than the GRM code with the same query complexity and message length. We also present for these PRM codes a perfectly smooth local decoder to recover a symbol in a codeword by accessing not more than <inline-formula> <tex-math notation="LaTeX">q </tex-math></inline-formula> symbols at the coordinates of the codeword.
Sprache
Englisch
Identifikatoren
ISSN: 0090-6778
eISSN: 1558-0857
DOI: 10.1109/TCOMM.2019.2900039
Titel-ID: cdi_ieee_primary_8643339

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX