Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Gait Rhythm Fluctuations Assessment for Neurodegenerative Patients
Ist Teil von
2018 9th Cairo International Biomedical Engineering Conference (CIBEC), 2018, p.9-12
Ort / Verlag
IEEE
Erscheinungsjahr
2018
Quelle
IEEE/IET Electronic Library (IEL)
Beschreibungen/Notizen
Neurodegenerative diseases (NDDs) such as Parkinson's disease (PD), Amyotrophic Lateral Sclerosis (ALS) and Huntington Disease (HD) are identified as the deterioration of motor neurons in human brain. These diseases would manipulate the strides from one gait cycle to another. Therefore, gait assessment can yield a significant approach for synthesizing a noninvasive technique to evaluate the effects of the neurological morbidness on the human gait dynamics and its variation with diseases. The present study explores the improvement of the classification capability by using nonlinear features with previously used linear features. Fisher score (FS) selection strategy has been used to get the optimal feature subset and the optimal gait time series for classifying NDD. Support vector machine (SVM) with radial basis kernel function (RBF) has been used to classify NDD patients against healthy control (CO) ones with an overall accuracy 95.31%.