Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 23 von 757
2018 IEEE International Conference on Big Data (Big Data), 2018, p.5187-5192
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
IoT Devices Recognition Through Network Traffic Analysis
Ist Teil von
  • 2018 IEEE International Conference on Big Data (Big Data), 2018, p.5187-5192
Ort / Verlag
IEEE
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • The growing Internet of Things (IoT) market introduces new challenges for network activity monitoring. Legacy network monitoring is not tailored to cope with the huge diversity of smart devices. New network discovery techniques are necessary in order to find out what IoT devices are connected to the network. In this context, data analysis techniques can be leveraged to find out specific patterns that can help to recognize device types. Indeed, contrary to desktop computers, IoT devices perform very specific tasks making their networking behavior very predictable. In this paper, we present a machine learning based approach in order to recognize the type of IoT devices connected to the network by analyzing streams of packets sent and received. We built an experimental smart home network to generate network traffic data. From the generated data, we have designed a model to describe IoT device network behaviors. By leveraging the t-SNE technique to visualize our data, we are able to differentiate the network traffic generated by different IoT devices. The data describing the network behaviors are then used to train six different machine learning classifiers to predict the IoT device that generated the network traffic. The results are promising with an overall accuracy as high as 99.9% on our test set achieved by Random Forest classifier.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/BigData.2018.8622243
Titel-ID: cdi_ieee_primary_8622243

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX