Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 132253
Pyramid Stereo Matching Network
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, p.5410-5418
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Pyramid Stereo Matching Network
Ist Teil von
  • 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, p.5410-5418
Ort / Verlag
IEEE
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Recent work has shown that depth estimation from a stereo pair of images can be formulated as a supervised learning task to be resolved with convolutional neural networks (CNNs). However, current architectures rely on patch-based Siamese networks, lacking the means to exploit context information for finding correspondence in ill-posed regions. To tackle this problem, we propose PSMNet, a pyramid stereo matching network consisting of two main modules: spatial pyramid pooling and 3D CNN. The spatial pyramid pooling module takes advantage of the capacity of global context information by aggregating context in different scales and locations to form a cost volume. The 3D CNN learns to regularize cost volume using stacked multiple hourglass networks in conjunction with intermediate supervision. The proposed approach was evaluated on several benchmark datasets. Our method ranked first in the KITTI 2012 and 2015 leaderboards before March 18, 2018. The codes of PSMNet are available at: https://github.com/JiaRenChang/PSMNet.
Sprache
Englisch
Identifikatoren
eISSN: 2575-7075
DOI: 10.1109/CVPR.2018.00567
Titel-ID: cdi_ieee_primary_8578665

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX