Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 6567
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, p.4854-4863
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Learning Attentions: Residual Attentional Siamese Network for High Performance Online Visual Tracking
Ist Teil von
  • 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, p.4854-4863
Ort / Verlag
IEEE
Erscheinungsjahr
2018
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • Offline training for object tracking has recently shown great potentials in balancing tracking accuracy and speed. However, it is still difficult to adapt an offline trained model to a target tracked online. This work presents a Residual Attentional Siamese Network (RASNet) for high performance object tracking. The RASNet model reformulates the correlation filter within a Siamese tracking framework, and introduces different kinds of the attention mechanisms to adapt the model without updating the model online. In particular, by exploiting the offline trained general attention, the target adapted residual attention, and the channel favored feature attention, the RASNet not only mitigates the over-fitting problem in deep network training, but also enhances its discriminative capacity and adaptability due to the separation of representation learning and discriminator learning. The proposed deep architecture is trained from end to end and takes full advantage of the rich spatial temporal information to achieve robust visual tracking. Experimental results on two latest benchmarks, OTB-2015 and VOT2017, show that the RASNet tracker has the state-of-the-art tracking accuracy while runs at more than 80 frames per second.
Sprache
Englisch
Identifikatoren
eISSN: 2575-7075
DOI: 10.1109/CVPR.2018.00510
Titel-ID: cdi_ieee_primary_8578608

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX