Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 22 von 22884
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, p.4394-4402
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Conditional Probability Models for Deep Image Compression
Ist Teil von
  • 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, p.4394-4402
Ort / Verlag
IEEE
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Deep Neural Networks trained as image auto-encoders have recently emerged as a promising direction for advancing the state-of-the-art in image compression. The key challenge in learning such networks is twofold: To deal with quantization, and to control the trade-off between reconstruction error (distortion) and entropy (rate) of the latent image representation. In this paper, we focus on the latter challenge and propose a new technique to navigate the rate-distortion trade-off for an image compression auto-encoder. The main idea is to directly model the entropy of the latent representation by using a context model: A 3D-CNN which learns a conditional probability model of the latent distribution of the auto-encoder. During training, the auto-encoder makes use of the context model to estimate the entropy of its representation, and the context model is concurrently updated to learn the dependencies between the symbols in the latent representation. Our experiments show that this approach, when measured in MS-SSIM, yields a state-of-the-art image compression system based on a simple convolutional auto-encoder.
Sprache
Englisch
Identifikatoren
eISSN: 2575-7075
DOI: 10.1109/CVPR.2018.00462
Titel-ID: cdi_ieee_primary_8578560

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX