Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 3646
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, p.70-78
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Weakly and Semi Supervised Human Body Part Parsing via Pose-Guided Knowledge Transfer
Ist Teil von
  • 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, p.70-78
Ort / Verlag
IEEE
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • Human body part parsing, or human semantic part segmentation, is fundamental to many computer vision tasks. In conventional semantic segmentation methods, the ground truth segmentations are provided, and fully convolutional networks (FCN) are trained in an end-to-end scheme. Although these methods have demonstrated impressive results, their performance highly depends on the quantity and quality of training data. In this paper, we present a novel method to generate synthetic human part segmentation data using easily-obtained human keypoint annotations. Our key idea is to exploit the anatomical similarity among human to transfer the parsing results of a person to another person with similar pose. Using these estimated results as additional training data, our semi-supervised model outperforms its strong-supervised counterpart by 6 mIOU on the PASCAL-Person-Part dataset [6], and we achieve state-of-the-art human parsing results. Our approach is general and can be readily extended to other object/animal parsing task assuming that their anatomical similarity can be annotated by keypoints. The proposed model and accompanying source code will be made publicly available.
Sprache
Englisch
Identifikatoren
eISSN: 2575-7075
DOI: 10.1109/CVPR.2018.00015
Titel-ID: cdi_ieee_primary_8578113

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX