Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 14 von 23
IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, p.6380-6383
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Hyper-Laplacian Regularized Low-Rank Tensor Decomposition for Hyperspectral Anomaly Detection
Ist Teil von
  • IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 2018, p.6380-6383
Ort / Verlag
IEEE
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • This paper presents a novel method for hyperspectral anomaly detection considering the spectral redundancy and exploiting spectral-spatial information at the same time. We proposed a Hyper-Laplacian regularized low-rank tensor decomposition method combing with dimensionality reduction framework. Firstly, k-means++ algorithm is implemented to spectral bands and centers of each group are selected to reduce the HSI dimensionality in spectral direction. To jointly utilize spectral-spatial information, the cubic data (two spatial dimensions and one spectral dimension) is treated as a 3-order tensor. Then the non-local self-similarity is fully explored in our method. For the reason to reduce the ringing artifacts caused by over-lapped segmentation in exploring the non-local self-similarity, we introduce the hyper-Laplacian constrained low-rank tensor decomposition and we get the separated background and residual parts. Finally, to eliminate the effect of Gaussian noise, we use local-Rx basic detector to detect the residual matrix. Experimental results on two real hyperspectral data sets verified the effectiveness of the proposed algorithms for HSI anomaly detection.
Sprache
Englisch
Identifikatoren
eISSN: 2153-7003
DOI: 10.1109/IGARSS.2018.8518627
Titel-ID: cdi_ieee_primary_8518627

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX