Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 18 von 485
IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, 2018, p.864-872
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Scheduling Coflows of Multi-stage Jobs to Minimize the Total Weighted Job Completion Time
Ist Teil von
  • IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, 2018, p.864-872
Ort / Verlag
IEEE
Erscheinungsjahr
2018
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • Datacenter networks are critical to Cloud computing. The coflow abstraction is a major leap forward of application-aware network scheduling. In the context of multistage jobs, there are dependencies among coflows. As a result, there is a large divergence between coflow-completion-time (CCT) and job-completion-time (JCT). To our best knowledge, this is the first work that systematically studies: how to schedule dependent coflows of multi-stage jobs, so that the total weighted job completion time can be minimized. We present a formal mathematical formulation. We also prove that this problem is strongly NP-hard. Inspired by the optimal solution of the relaxed linear programming, we design an algorithm that runs in polynomial time to solve this problem with an approximation ratio of (2M + 1), where M is the number of machines. Evaluation results demonstrate that, the largest gap between our algorithm and the lower bound is only 9.14%. We reduce the average JCT by up to 33.48 % compared with Aalo, a heuristic multi-stage coflow scheduler. We reduce the total weighted JCT by up to 83.31 % compared with LP-OV-LS, the state-of-the-art approximation algorithm of coflow scheduling.
Sprache
Englisch
Identifikatoren
DOI: 10.1109/INFOCOM.2018.8486340
Titel-ID: cdi_ieee_primary_8486340

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX