Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Triple Verification Network for Generalized Zero-Shot Learning
Ist Teil von
IEEE transactions on image processing, 2019-01, Vol.28 (1), p.506-517
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2019
Quelle
IEEE Xplore Digital Library
Beschreibungen/Notizen
Conventional zero-shot learning approaches often suffer from severe performance degradation in the generalized zero-shot learning (GZSL) scenario, i.e., to recognize test images that are from both seen and unseen classes. This paper studies the Class-level Over-fitting (CO) and empirically shows its effects to GZSL. We then address ZSL as a triple verification problem and propose a unified optimization of regression and compatibility functions, i.e., two main streams of existing ZSL approaches. The complementary losses mutually regularizes the same model to mitigate the CO problem. Furthermore, we implement a deep extension paradigm to linear models and significantly outperform state-of-the-art methods in both GZSL and ZSL scenarios on the four standard benchmarks.