Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Multifaceted test suite generation using primary and supporting fitness functions
Ist Teil von
2018 IEEE/ACM 11th International Workshop on Search-Based Software Testing (SBST), 2018, p.2-5
Ort / Verlag
New York, NY, USA: ACM
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
Dozens of criteria have been proposed to judge testing adequacy. Such criteria are important, as they guide automated generation efforts. Yet, the current use of such criteria in automated generation contrasts how such criteria are used by humans. For a human, coverage is part of a multifaceted combination of testing strategies. In automated generation, coverage is typically the goal, and a single fitness function is applied at one time. We propose that the key to improving the fault detection efficacy of search-based test generation approaches lies in a targeted, multifaceted approach pairing primary fitness functions that effectively explore the structure of the class under test with lightweight supporting fitness functions that target particular scenarios likely to trigger an observable failure.
This report summarizes our findings to date, details the hypothesis of primary and supporting fitness functions, and identifies outstanding research challenges related to multifaceted test suite generation. We hope to inspire new advances in search-based test generation that could benefit our software-powered society.