Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Navigating the Landscape for Real-Time Localization and Mapping for Robotics and Virtual and Augmented Reality
Ist Teil von
Proceedings of the IEEE, 2018-11, Vol.106 (11), p.2020-2039
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
Visual understanding of 3-D environments in real time, at low power, is a huge computational challenge. Often referred to as simultaneous localization and mapping (SLAM), it is central to applications spanning domestic and industrial robotics, autonomous vehicles, and virtual and augmented reality. This paper describes the results of a major research effort to assemble the algorithms, architectures, tools, and systems software needed to enable delivery of SLAM, by supporting applications specialists in selecting and configuring the appropriate algorithm and the appropriate hardware, and compilation pathway, to meet their performance, accuracy, and energy consumption goals. The major contributions we present are: 1) tools and methodology for systematic quantitative evaluation of SLAM algorithms; 2) automated, machine-learning-guided exploration of the algorithmic and implementation design space with respect to multiple objectives; 3) end-to-end simulation tools to enable optimization of heterogeneous, accelerated architectures for the specific algorithmic requirements of the various SLAM algorithmic approaches; and 4) tools for delivering, where appropriate, accelerated, adaptive SLAM solutions in a managed, JIT-compiled, adaptive runtime context.