Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 278
IEEE transactions on fuzzy systems, 2018-12, Vol.26 (6), p.3715-3729
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Novel Adaptive Clustering Algorithms Based on a Probabilistic Similarity Measure Over Atanassov Intuitionistic Fuzzy Set
Ist Teil von
  • IEEE transactions on fuzzy systems, 2018-12, Vol.26 (6), p.3715-3729
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2018
Quelle
IEEE Xplore
Beschreibungen/Notizen
  • This paper presents a novel probabilistic similarity measure (PSM) for Atanassov intuitionistic fuzzy sets. It then exploits PSM to propose an adaptive probabilistic similarity degree and develops the novel probabilistic λ-cutting algorithm for clustering. Further, the probabilistic distance measure (obtained from the PSM) is used to develop a new clustering technique, which we have named "probabilistic intuitionistic fuzzy c-mean (PIFCM) algorithm". Simulation experiments have been conducted over a variety of datasets including UCI machine learning datasets and realworld car dataset. The results obtained have been thoroughly compared with other well-known clustering techniques such as fuzzy c-mean (FCM), intuitionistic fuzzy c-mean, association coefficient method, and λ-cutting method. Based upon the experimental results, it can be concluded that our probabilistic λ-cutting algorithm and PIFCM algorithm outperform their existing counterparts.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX