Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 17
2017 51st Asilomar Conference on Signals, Systems, and Computers, 2017, p.2020-2024
2017
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
An autoregressive approach to inference in populations of correlated stochastic neurons
Ist Teil von
  • 2017 51st Asilomar Conference on Signals, Systems, and Computers, 2017, p.2020-2024
Ort / Verlag
IEEE
Erscheinungsjahr
2017
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • In this paper, we study the correlated neuronal activity caused by afferent inputs from distinct and common population of pre-synaptic neurons. We present a method based on the integration of the expectation-maximization algorithm, Kalman filtering and backward smoothing in order to estimate the parameters associated with pre-synaptic activity and the latent common inputs from post-synaptic measurements. We provide simulation results that validate the performance of the proposed methodology in terms of parameter estimation and tracking the dynamics of the common pre-synaptic inputs.
Sprache
Englisch
Identifikatoren
eISSN: 2576-2303
DOI: 10.1109/ACSSC.2017.8335722
Titel-ID: cdi_ieee_primary_8335722

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX