Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
A 65nm 1Mb nonvolatile computing-in-memory ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN AI edge processors
Ist Teil von
2018 IEEE International Solid - State Circuits Conference - (ISSCC), 2018, p.494-496
Ort / Verlag
IEEE
Erscheinungsjahr
2018
Quelle
IEEE/IET Electronic Library
Beschreibungen/Notizen
Many artificial intelligence (AI) edge devices use nonvolatile memory (NVM) to store the weights for the neural network (trained off-line on an AI server), and require low-energy and fast I/O accesses. The deep neural networks (DNN) used by AI processors [1,2] commonly require p-layers of a convolutional neural network (CNN) and q-layers of a fully-connected network (FCN). Current DNN processors that use a conventional (von-Neumann) memory structure are limited by high access latencies, I/O energy consumption, and hardware costs. Large working data sets result in heavy accesses across the memory hierarchy, moreover large amounts of intermediate data are also generated due to the large number of multiply-and-accumulate (MAC) operations for both CNN and FCN. Even when binary-based DNN [3] are used, the required CNN and FCN operations result in a major memory I/O bottleneck for AI edge devices.