Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 8 von 18
IEEE transactions on emerging topics in computing, 2021-01, Vol.9 (1), p.44-54
2021
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Concurrency Analysis in Dynamic Dataflow Graphs
Ist Teil von
  • IEEE transactions on emerging topics in computing, 2021-01, Vol.9 (1), p.44-54
Ort / Verlag
New York: IEEE
Erscheinungsjahr
2021
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Dynamic dataflow scheduling enables effective exploitation of concurrency while making parallel programming easier. To this end, analyzing the inherent degree of concurrency available in dataflow graphs is an important task, since it may aid compilers or programmers to assess the potential performance a program can achieve via parallel execution. However, traditional concurrency analysis techniques only work for DAGs (directed acyclic graphs), hence the need for new techniques that contemplate graphs with cycles. In this paper we present techniques to perform concurrency analysis on generic dynamic dataflow graphs, even in the presence of cycles. In a dataflow graph, nodes represent instructions and edges describe dependencies. The novelty of our approach is that we allow concurrency between different iterations of the loops. Consequently, a set of concurrent nodes may contain instructions from different loops that can be proven independent. In this work, we provide a set of theoretical tools for obtaining bounds and illustrate implementation of parallel dataflow runtime on a set of representative graphs for important classes of benchmarks to compare measured performance against derived bounds.
Sprache
Englisch
Identifikatoren
ISSN: 2168-6750
eISSN: 2168-6750
DOI: 10.1109/TETC.2018.2799078
Titel-ID: cdi_ieee_primary_8269827

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX