Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 9 von 15561
2017 IEEE International Conference on Computer Vision (ICCV), 2017, p.4549-4557
2017
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
MemNet: A Persistent Memory Network for Image Restoration
Ist Teil von
  • 2017 IEEE International Conference on Computer Vision (ICCV), 2017, p.4549-4557
Ort / Verlag
IEEE
Erscheinungsjahr
2017
Quelle
IEEE Electronic Library (IEL)
Beschreibungen/Notizen
  • Recently, very deep convolutional neural networks (CNNs) have been attracting considerable attention in image restoration. However, as the depth grows, the longterm dependency problem is rarely realized for these very deep models, which results in the prior states/layers having little influence on the subsequent ones. Motivated by the fact that human thoughts have persistency, we propose a very deep persistent memory network (MemNet) that introduces a memory block, consisting of a recursive unit and a gate unit, to explicitly mine persistent memory through an adaptive learning process. The recursive unit learns multi-level representations of the current state under different receptive fields. The representations and the outputs from the previous memory blocks are concatenated and sent to the gate unit, which adaptively controls how much of the previous states should be reserved, and decides how much of the current state should be stored. We apply MemNet to three image restoration tasks, i.e., image denosing, super-resolution and JPEG deblocking. Comprehensive experiments demonstrate the necessity of the MemNet and its unanimous superiority on all three tasks over the state of the arts. Code is available at https://github.com/tyshiwo/MemNet.
Sprache
Englisch
Identifikatoren
eISSN: 2380-7504
DOI: 10.1109/ICCV.2017.486
Titel-ID: cdi_ieee_primary_8237748

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX