Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
2017 IEEE International Conference on Computer Vision (ICCV), 2017, p.3066-3074
Ort / Verlag
IEEE
Erscheinungsjahr
2017
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
We present a novel single-shot text detector that directly outputs word-level bounding boxes in a natural image. We propose an attention mechanism which roughly identifies text regions via an automatically learned attentional map. This substantially suppresses background interference in the convolutional features, which is the key to producing accurate inference of words, particularly at extremely small sizes. This results in a single model that essentially works in a coarse-to-fine manner. It departs from recent FCN-based text detectors which cascade multiple FCN models to achieve an accurate prediction. Furthermore, we develop a hierarchical inception module which efficiently aggregates multi-scale inception features. This enhances local details, and also encodes strong context information, allowing the detector to work reliably on multi-scale and multi-orientation text with single-scale images. Our text detector achieves an F-measure of 77% on the ICDAR 2015 benchmark, advancing the state-of-the-art results in [18, 28]. Demo is available at: http://sstd.whuang.org/.