Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 12 von 257
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, p.6175-6184
2017
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Are Large-Scale 3D Models Really Necessary for Accurate Visual Localization?
Ist Teil von
  • 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, p.6175-6184
Ort / Verlag
IEEE
Erscheinungsjahr
2017
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • Accurate visual localization is a key technology for autonomous navigation. 3D structure-based methods employ 3D models of the scene to estimate the full 6DOF pose of a camera very accurately. However, constructing (and extending) large-scale 3D models is still a significant challenge. In contrast, 2D image retrieval-based methods only require a database of geo-tagged images, which is trivial to construct and to maintain. They are often considered inaccurate since they only approximate the positions of the cameras. Yet, the exact camera pose can theoretically be recovered when enough relevant database images are retrieved. In this paper, we demonstrate experimentally that large-scale 3D models are not strictly necessary for accurate visual localization. We create reference poses for a large and challenging urban dataset. Using these poses, we show that combining image-based methods with local reconstructions results in a pose accuracy similar to the state-of-the-art structure-based methods. Our results suggest that we might want to reconsider the current approach for accurate large-scale localization.
Sprache
Englisch
Identifikatoren
ISSN: 1063-6919
DOI: 10.1109/CVPR.2017.654
Titel-ID: cdi_ieee_primary_8100137

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX