Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 20 von 193
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, p.2838-2847
2017
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Video Desnowing and Deraining Based on Matrix Decomposition
Ist Teil von
  • 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, p.2838-2847
Ort / Verlag
IEEE
Erscheinungsjahr
2017
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • The existing snow/rain removal methods often fail for heavy snow/rain and dynamic scene. One reason for the failure is due to the assumption that all the snowflakes/rain streaks are sparse in snow/rain scenes. The other is that the existing methods often can not differentiate moving objects and snowflakes/rain streaks. In this paper, we propose a model based on matrix decomposition for video desnowing and deraining to solve the problems mentioned above. We divide snowflakes/rain streaks into two categories: sparse ones and dense ones. With background fluctuations and optical flow information, the detection of moving objects and sparse snowflakes/rain streaks is formulated as a multi-label Markov Random Fields (MRFs). As for dense snowflakes/rain streaks, they are considered to obey Gaussian distribution. The snowflakes/rain streaks, including sparse ones and dense ones, in scene backgrounds are removed by low-rank representation of the backgrounds. Meanwhile, a group sparsity term in our model is designed to filter snow/rain pixels within the moving objects. Experimental results show that our proposed model performs better than the state-of-the-art methods for snow and rain removal.
Sprache
Englisch
Identifikatoren
ISSN: 1063-6919
DOI: 10.1109/CVPR.2017.303
Titel-ID: cdi_ieee_primary_8099786

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX