Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 26 von 20825
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, p.2605-2613
2017
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
BigHand2.2M Benchmark: Hand Pose Dataset and State of the Art Analysis
Ist Teil von
  • 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, p.2605-2613
Ort / Verlag
IEEE
Erscheinungsjahr
2017
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
  • In this paper we introduce a large-scale hand pose dataset, collected using a novel capture method. Existing datasets are either generated synthetically or captured using depth sensors: synthetic datasets exhibit a certain level of appearance difference from real depth images, and real datasets are limited in quantity and coverage, mainly due to the difficulty to annotate them. We propose a tracking system with six 6D magnetic sensors and inverse kinematics to automatically obtain 21-joints hand pose annotations of depth maps captured with minimal restriction on the range of motion. The capture protocol aims to fully cover the natural hand pose space. As shown in embedding plots, the new dataset exhibits a significantly wider and denser range of hand poses compared to existing benchmarks. Current state-of-the-art methods are evaluated on the dataset, and we demonstrate significant improvements in cross-benchmark performance. We also show significant improvements in egocentric hand pose estimation with a CNN trained on the new dataset.
Sprache
Englisch
Identifikatoren
ISSN: 1063-6919
DOI: 10.1109/CVPR.2017.279
Titel-ID: cdi_ieee_primary_8099762

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX