Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 17 von 968

Details

Autor(en) / Beteiligte
Titel
Design of Sparse Halbach Magnet Arrays for Portable MRI Using a Genetic Algorithm
Ist Teil von
  • IEEE transactions on magnetics, 2018-01, Vol.54 (1), p.1-12
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2018
Link zum Volltext
Quelle
IEEE Xplore Digital Library
Beschreibungen/Notizen
  • Permanent magnet arrays offer several attributes attractive for the development of a low-cost portable MRI scanner for brain imaging. They offer the potential for a relatively lightweight, low to mid-field system with no cryogenics, a small fringe field, and no electrical power requirements or heat dissipation needs. The cylindrical Halbach array, however, requires external shimming or mechanical adjustments to produce B 0 fields with standard MRI homogeneity levels (e.g., 0.1 ppm over field of view), particularly when constrained or truncated geometries are needed, such as a head-only magnet where the magnet length is constrained by the shoulders. For portable scanners using rotation of the magnet for spatial encoding with generalized projections, the spatial pattern of the field is important since it acts as the encoding field. In either a static or rotating magnet, it will be important to be able to optimize the field pattern of cylindrical Halbach arrays in a way that retains construction simplicity. To achieve this, we present a method for designing an optimized cylindrical Halbach magnet using the genetic algorithm (GA) to achieve either homogeneity (for standard MRI applications) or a favorable spatial encoding field pattern (for rotational spatial encoding applications). We compare the chosen designs against a standard, fully populated sparse Halbach design, and evaluate optimized spatial encoding fields using point-spread-function and image simulations. We validate the calculations by comparing to the measured field of a constructed magnet. The experimentally implemented design produced fields in good agreement with the predicted fields, and the GA was successful in improving the chosen metrics. For the uniform target field, an order of magnitude homogeneity improvement was achieved compared to the un-optimized, fully populated design. For the rotational encoding design, the resolution uniformity is improved by 95% compared to a uniformly populated design.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX