Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Segmentation of gait sequences using inertial sensor data in hereditary spastic paraplegia
Ist Teil von
2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017, Vol.2017, p.1266-1269
Ort / Verlag
IEEE
Erscheinungsjahr
2017
Quelle
Alma/SFX Local Collection
Beschreibungen/Notizen
In this paper we use foot-mounted inertial measurement units (IMU) as a mobile solution to measure the gait of 21 HSP patients while performing a 4 by 10 m walk at self-selected pace. Two algorithms common to other gait analysis solutions, the hidden Markov model (HMM) and dynamic time warping (DTW), were applied to these signals in order to investigate their effectiveness when faced with the heterogeneous nature and range of foot strike techniques of HSP gait, sometimes even lacking a heel strike. Using a nested cross validation for parameter choice and validation, the HMM was found to be superior for segmentation purposes with a mean segmentation error of 0.10 ± 0.05 s.