Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 7 von 17
IEEE transaction on neural networks and learning systems, 2018-08, Vol.29 (8), p.3548-3559
2018
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Adaboost-LLP: A Boosting Method for Learning With Label Proportions
Ist Teil von
  • IEEE transaction on neural networks and learning systems, 2018-08, Vol.29 (8), p.3548-3559
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
  • How to solve the classification problem with only label proportions has recently drawn increasing attention in the machine learning field. In this paper, we propose an ensemble learning strategy to deal with the learning problem with label proportions (LLP). In detail, we first give a loss function based on different weights for LLP, and then construct the corresponding weak classifier, at the same time, estimate its conditional probabilities by a standard logistic function. At last, by introducing the maximum likelihood estimation, we propose a new anyboost learning system for LLP (called Adaboost-LLP). Unlike traditional methods, our method does not make any restrictive assumptions on training set; at the same time, compared with alter-<inline-formula> <tex-math notation="LaTeX">\propto </tex-math></inline-formula>SVM, Adaboost-LLP exploits more extra weight information and uses multiple weak classifiers that can be solved efficiently to combine a strong classifier. All experiments show that our method outperforms the existing methods in both accuracy and training time.
Sprache
Englisch
Identifikatoren
ISSN: 2162-237X
eISSN: 2162-2388
DOI: 10.1109/TNNLS.2017.2727065
Titel-ID: cdi_ieee_primary_8010865

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX