Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Adaboost-LLP: A Boosting Method for Learning With Label Proportions
Ist Teil von
IEEE transaction on neural networks and learning systems, 2018-08, Vol.29 (8), p.3548-3559
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2018
Quelle
IEEE Electronic Library Online
Beschreibungen/Notizen
How to solve the classification problem with only label proportions has recently drawn increasing attention in the machine learning field. In this paper, we propose an ensemble learning strategy to deal with the learning problem with label proportions (LLP). In detail, we first give a loss function based on different weights for LLP, and then construct the corresponding weak classifier, at the same time, estimate its conditional probabilities by a standard logistic function. At last, by introducing the maximum likelihood estimation, we propose a new anyboost learning system for LLP (called Adaboost-LLP). Unlike traditional methods, our method does not make any restrictive assumptions on training set; at the same time, compared with alter-<inline-formula> <tex-math notation="LaTeX">\propto </tex-math></inline-formula>SVM, Adaboost-LLP exploits more extra weight information and uses multiple weak classifiers that can be solved efficiently to combine a strong classifier. All experiments show that our method outperforms the existing methods in both accuracy and training time.