Sie befinden Sich nicht im Netzwerk der Universität Paderborn. Der Zugriff auf elektronische Ressourcen ist gegebenenfalls nur via VPN oder Shibboleth (DFN-AAI) möglich. mehr Informationen...
Ergebnis 5 von 394872
IEEE transactions on medical imaging, 2017-11, Vol.36 (11), p.2376-2388
2017
Volltextzugriff (PDF)

Details

Autor(en) / Beteiligte
Titel
Constrained Deep Weak Supervision for Histopathology Image Segmentation
Ist Teil von
  • IEEE transactions on medical imaging, 2017-11, Vol.36 (11), p.2376-2388
Ort / Verlag
United States: IEEE
Erscheinungsjahr
2017
Quelle
IEEE Xplore Digital Library
Beschreibungen/Notizen
  • In this paper, we develop a new weakly supervised learning algorithm to learn to segment cancerous regions in histopathology images. This paper is under a multiple instance learning (MIL) framework with a new formulation, deep weak supervision (DWS); we also propose an effective way to introduce constraints to our neural networks to assist the learning process. The contributions of our algorithm are threefold: 1) we build an end-to-end learning system that segments cancerous regions with fully convolutional networks (FCNs) in which image-to-image weakly-supervised learning is performed; 2) we develop a DWS formulation to exploit multi-scale learning under weak supervision within FCNs; and 3) constraints about positive instances are introduced in our approach to effectively explore additional weakly supervised information that is easy to obtain and enjoy a significant boost to the learning process. The proposed algorithm, abbreviated as DWS-MIL, is easy to implement and can be trained efficiently. Our system demonstrates the state-of-the-art results on large-scale histopathology image data sets and can be applied to various applications in medical imaging beyond histopathology images, such as MRI, CT, and ultrasound images.

Weiterführende Literatur

Empfehlungen zum selben Thema automatisch vorgeschlagen von bX